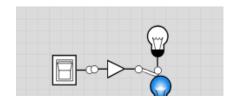
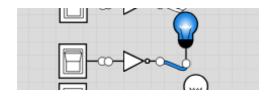
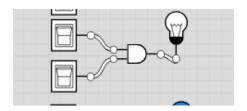

TUTORIAL LOGICLY PUERTAS LÓGICAS


Guión tutorial logicly

Para aquellas personas que necesiten de un **simulador de circuitos de puertas lógicas**, no tienen porque buscarse ninguna aplicación para su sistema operativo. Pueden usar **Logicly**, un simulador de circuitos puertas lógicas online donde **pueden crear sus esquemas de puertas lógicas y probar resultados** sin necesidad de registros.

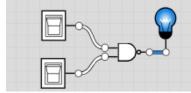
Para empezar deberíamos conocer los 8 tipos de puertas lógicas.


BUFFER:

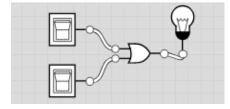

Α	SALIDA
0	0
1	1

NOT:

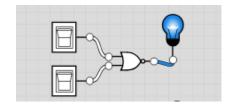
Α	SALIDA
0	1
1	0



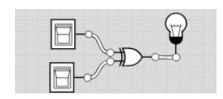
AND:


Α	В	SALIDA	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

NAND:


A	В	SALIDA	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

OR:


Α	В	SALIDA		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

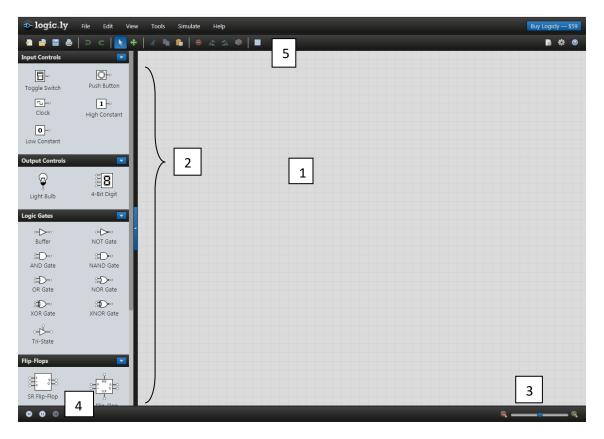
NOR:

Α	В	SALIDA		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

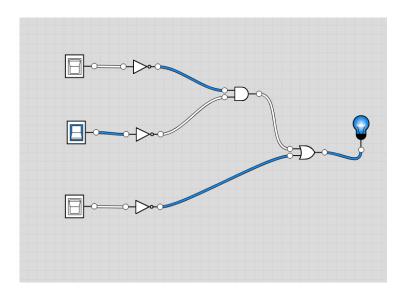
XOR:

Α	В	SALIDA	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Y ahora, la explicación de la interfaz:


Este es el cuadro de mandos, donde están las puertas lógicas, las entradas y las salidas.

1º: Entradas ; 2º:Salidas ; 3º:Puertas lógicas.

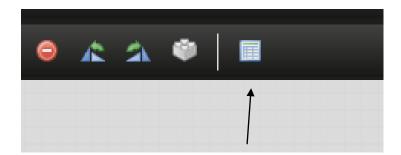

Logicly es un simulador básico de circuitos, el cual permite la creación de circuitos eléctricos mediante el uso de las principales puertas lógicas (puertas AND, OR, NOT, XOR, NAND, etc), bombillas, switches y temporizadores.

Primero vamos a explicar su interfaz:

- 1. Este es el lugar donde vas a arrastrar los elementos que tenemos a la izquierda para construir tu propio circuito con puertas lógicas.
- 2. Este es lugar de donde vas a sacar las puertas lógicas, las entradas y las salidas, para después arrastrarlas al punto1
- 3. Zoom para agrandar o empequeñecer la imagen
- 4. Para pausar o resetear la simulación
- 5. Barra de herramientas.

Este es un circuito integrado con tres puertas lógicas: la OR , la AND y la NOT.

La salida es la bombilla , y la tabla de verdad es la siguiente :


Α	В	С	Salida	
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	0	

Esquema puertas lógicas :

	Ecuación		Simbolos			
Función	lógica	Norma MIL	Norma IEC	Circuito físico con contactos	Tabla de verdad	Cronograma
or	S = A+B	A B	A≥1S	A S	ABS 000 011 101 111	A B S
AND	S = A·B	A S	A & S	A B S S S S S S S S S S S S S S S S S S	ABS 000 010 100 1111	A B S S
нот	S = A	A S inversor	As	a s	A S Ø 1 1 Ø	A S
NOR (OR+NOT)	$S = \overline{A + B}$ $S = \overline{A} \cdot \overline{B}$	A S	<u>A</u>	Ā B S	ABS 001 010 100 1100	B S
NAND (AND+NOT)	$S = \overline{A \cdot B}$ $S = \overline{A} + \overline{B}$	A S	A & S	Ā S B	ABS 001 011 101 110	A B S
EXOR	$S = A \oplus B = $ $= A \overline{B} + \overline{A} B$	A B	A = 1 S	A B S	ABS 000 011 101 110	A B S
EXCI TADOR	S = A	AS	A1_S	A S	A S 0 0 1 1	s s

Y si queremos hacer la tabla de verdad desde el programa podemos darle arriba a este símbolo:

Lo puede guardar pinchando en este símbolo:

