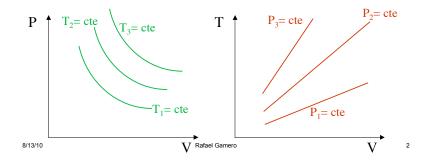
TERMODINÁMICA AVANZADA

Unidad I: Propiedades y Leyes de la Termodinámica

- Gases ideales
- Gases reales
- Gases y vapores

8/13/10


Rafael Gamero

Gases Ideales

Ecuación de estado

$$PV = nRT$$
 $P\overline{V} = RT$

Gases y Vapores

Similitudes entre gas y vapor

Un gas y un vapor pertenecen al estado de agregación (fase) en la cual las moléculas se encuentran más separadas entre si con respecto a la fase líquida.

La fuerza gravitacional ejerce menor influencia sobre la sustancia en esa fase.

No poseen volumen propio, sino adoptan el del sistema que los contienen.

Gases y Vapores

Gas

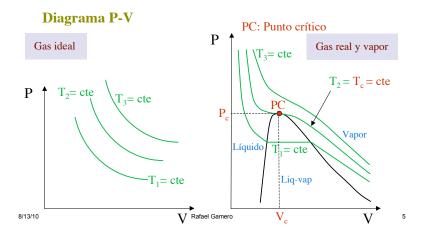
Fase (o estado de agregación) existente a condiciones normales.

Un gas requiere extracción de calor (enfriamiento) y aumento de presión (compresión) para alcanzar la fase líquida (licuefacción).

Vapor

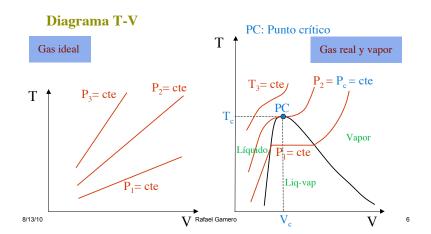
Fase existente a partir del punto de ebullición.

Un vapor requiere extracción de calor (enfriamiento) a presión constante (presión de vapor) para alcanzar la fase líquida (condensación).


8/13/10 Rafael Gamero 4

8/13/10

Rafael Gamero


Gases y Vapores

Gases y Vapores

Gases y Vapores

Punto crítico

- Es el punto máximo de la curva de cambio de fase o curva de saturación.
- Es el punto en el cual las propiedades de la fase líquida y la fase vapor son iguales: Propiedades críticas.
- El punto crítico es la coordenada del estado crítico de una sustancia.
- Las propiedades críticas son constantes características de cada sustancia. Se encuentran tabuladas en bases de datos.

8/13/10 Rafael Gamero

Gases y Vapores

Punto crítico

Propiedades críticas y factor acéntrico de sustancias puras

Referencia

Smith J.M., Van Ness H.C., Abott M.M. (1996), Introducción a la Termodinámica en Ingeniería Química, 5ta ed., McGraw Hill, Mexico D.F., Mexico.

	Masa molar	ω	$T_c/{ m K}$	P_c /ba	$z Z_c$	V. m ³ mol ⁻¹	T _n /K
Metano1	32.042	0.564	512.6	80.97	0.224	118.	337.9
Etanol	46.069	0.645	513.9	61.48	0.240	167.	351.4
1-Propano1	60.096	0.622	536.8	51.75	0.254	219.	370.4
1-Butano1	74.123	0.594	563.1	44.23	0.260	275.	390.8
1-Hexanol	102.177	0.579	611.4	35.10	0.263	381.	430.6
2-Propanol	60.096	0.668	508.3	47.62	0.248	220.	355.4
Penol	94.113	0.444	694.3	61.30	0.243	229.	455.0
Etilenglicol	62.068	0.487	719.7	77.00	0.246	191.0	470.5
Ácido acético	60.053	0.467	592.0	57.86	0.211	179.7	391.1
Ácido n-butírico	88.106	0.681	615.7	40.64	0.232	291.7	436.4
Ácido benzoico	122.123	0.603	751.0	44.70	0.246	344.	522.4
Acetonitrilo	41.053	0.338	545.5	48.30	0.184	173.	354.8
Metilamina	31.057	0.281	430.1	74.60	0.321	154.	266.8
Etilamina	45.084	0.285	456.2	56.20	0.307	207.	289.7
Nitrometano	61.040	0.348	588.2	63.10	0.223	173.	374.4
Tetracloruro de carbono	153.822	0.193	556.4	45.60	0.272	276.	349.8
Cloroformo	119.377	0.222	536.4	54.72	0.293	239.	334.3
Diclorometano	84.932	0.199	510.0	60.80	0.265	185.	312.9
Cloruro de metilo	50.488	0.153	416.3	66.80	0.276	143.	249.1
Cloruro de etilo	64.514	0.190	460.4	52.70	0.275	200.	285.4
Clorobenceno	112.558	0.250	632.4	45.20	0.265	308.	404.9
Argón	39.948	0.000	150.9	48.98	0.291	74.6	87.3
Kriptón	83.800	0.000	209.4	55.02	0.288	91.2	119.8
Xenón	165.03	0.000	289.7	58.40	0.286	118.0	165.0
Helio 4	4.003	-0.390	5.2	2.28	0.302	57.3	4.2
Hidrógeno	2.016	-0.216	33.19	13.13	0.305	64.1	20.4
Oxígeno	31.999	0.022	154.6	50.43	0.288	73.4	90.2
Nitrógeno Raraer Gamero	28.014	0.038	126.2	34.00	0.289	89.2	77.3

Gases y Vapores

Punto crítico

Propiedades reducidas

Son propiedades adimensionales con referencia a las propiedades críticas.

Temperatura reducida:

 $T_r = \frac{T}{T_c}$

Volumen reducido:

 $V_r = \frac{V}{V_c}$

Presión reducida:

 $P_r = \frac{P}{P}$

También existen propiedades de transporte críticas y reducidas.

8/13/10

Rafael Gamero

Gases Reales

Interacción molecular

Gases ideales: No hay interacción molecular.

 $P\overline{V}=RT$

Energía molecular: Suma de la energía debido al movimiento rotacional, traslacional y vibracional de las moléculas.

Gases reales: Existe colisión entre las moléculas y la forma de las mismas pueden ser no simétrica.

Existe influencia del punto crítico.

 $P\overline{V} \neq RT$

8/13/10 Rafael Gamero 1

Gases Reales

11

Factor de compresibilidad

• Existe un factor Z adimensional, conocido como factor de compresibilidad que establece la igualdad en la ecuación de gases para su aplicación a gases reales.

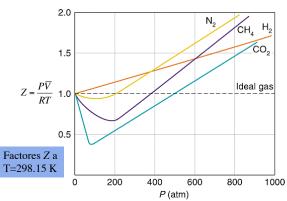
$$\frac{P\overline{V}}{RT} = 1$$

Gases ideales

comportamiento ideal si $P \rightarrow 0$.

$$\frac{P\overline{V}}{RT} = Z$$
 Gases reales

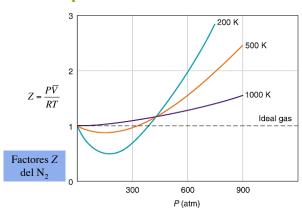
El factor Z depende de la presión.


Un gas real presenta un

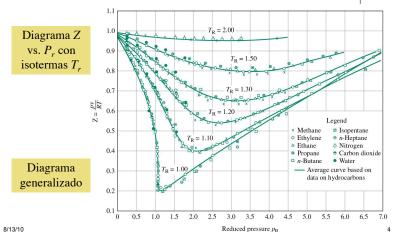
8/13/10 Rafael Gamero

Gases Reales

Factor de compresibilidad


8/13/10

12


Factor de compresibilidad

8/13/10

Gases Reales

Gases Reales

Factor de compresibilidad

La relación entre el factor de compresibilidad y las propiedades reducidas $(T_r \ y \ P_r)$ fue hecha por primera vez por Van der Waals en 1873.

Esa relación se conoce como Ley de Estados Correspondientes.

Johannes Diderik Van der Waals (1837-1923)

Gases Reales

Ley de Estados Correspondientes

"Las propiedades de un gas, las cuales dependen de las interacciones molecualares, están relacionadas a las propiedades críticas del gas en una forma universal o generalizada".

Esto se expresa mediante las propiedades reducidas:

"Los estados correspondientes a las propiedades reducidas de cualquier gas son iguales".

Los estados correspondientes son reportados en los llamados *diagramas generalizados*.

8/13/10 Rafael Gamero 15 8/13/10 Rafael Gamero 1

Diagrama generalizado en escala semilogarítmica

 $Pv = ZRT \Rightarrow Z = \left[\frac{Pv}{RT}\right]$ Reduced temperature Tr = 2.0 factor Tr ≠ 1.5 Compressibility 0.7 Saturated gas 0.5 Critical Point

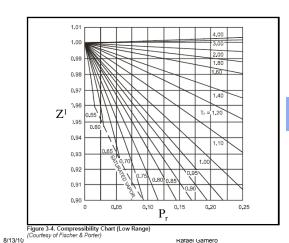
Reduced pressure Pr

Referencia

Lee B.I., Kesler M.G. (1975), A Generalized Thermodynamic Correlation based on Three-Parameter Corresponding States. AIChE Journal. Vol. 21, Issue 3, pp. 510-527.

8/13/10

Gases Reales


Factores Z a alta presion

8/13/10

 Z^0

Gases Reales

Factores Z a baja presion

Gases Reales

Rafael Gamero

Factor de compresibilidad

$$Z = Z^0 + \omega Z^1$$

Con:

$$\omega = -1.0 - log(P_r^{sat})_{T_r = 0.7}$$

ω: Factor acéntrico de Pitzer Considera la no esfericidad o asimetría de las moléculas.

 $\omega = 0$, para gases ligeros, e.g. gase nobles

Valores de ω pueden encontrarse tabulados junto a las propiedades críticas.

8/13/10 Rafael Gamero 20

Ecuaciones viriales

Son modelos en series infinitas que describen la ecuación de estado del gas ideal o el factor Z en función de coeficientes viriales que dependen de la temperatura y están asociadas a la presión y al volumen.

$$Z = \frac{P\overline{V}}{RT} = 1 + B'P + C'P^2 + D'P^3 + ...$$

$$Z = \frac{P\overline{V}}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \dots$$

Coeficientes Viriales: B, B', C, C', D, D' son características para cada gas.

8/13/10

Gases Reales

Ecuaciones viriales

Los coeficientes de ambas ecuaciones viriales se relacionan entre si de acuerdo a:

$$B' = \frac{B}{RT}$$

$$B' = \frac{B}{RT}$$
 $D' = \frac{D - 3BC + 2B^2}{(RT)^3}$

$$C' = \frac{C - B^2}{(RT)^2}$$

8/13/10 Rafael Gamero

Gases Reales

Ecuaciones cúbicas

Ecuación de gases ideales

$$P\overline{V} = RT$$

Van der Waals introdujo la correción al volumen total considerando el volumen molecular y la correción a la presión mediante un término asociado con el volumen (interacciones moleculares).

Las constantes a y b son particulares para cada gas.

$$\left(P + \frac{a}{\overline{V}^2}\right) \left(\overline{V} - b\right) = RT$$

$$P = \frac{RT}{\left(\overline{V} - b\right)} - \frac{a}{\overline{V}^2}$$

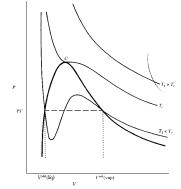
Dos formas de la ecuación

de Van der Waals

Gases Reales

22

Ecuaciones cúbicas


Ecuación de Van der Waals

$$P = \frac{RT}{\left(\overline{V} - b\right)} - \frac{a}{\overline{V}^2}$$

Con:

8/13/10

$$a = \frac{27R^2T_c^2}{64P_c} \qquad b = \frac{R}{8}$$

Isotermas de Van der Waals

8/13/10

Rafael Gamero

23

Ecuaciones cúbicas

$$P = \frac{RT}{\overline{V} - b} - \frac{a}{\overline{V}^2 + ub\overline{V} + wb^2}$$

Ecuación generalizada

Correspondiente al polinomio:

$$Z^{3} - (1 + B^{*} - uB^{*})Z^{2} + (A^{*} + wB^{*2} - uB^{*} - uB^{*2})Z - A^{*}B^{*} - wB^{*2} - wB^{*3} = 0$$

Con valores de los coeficientes:

$$A^* = \frac{aP}{R^2 T^2} \qquad B^* = \frac{bP}{RT}$$

8/13/10 Rafael Gamero

Gases Reales

Ecuaciones cúbicas más representativas

Ecuación	и	w	b	а			
Van der Waals	0	0	RT _c /8P _c	$27R^2(T_c)^2/64P_c$			
Redlich-Kwong	1	0	0.08664RT _c /P _c	0.42748R ² T ^{2.5} /P _c T ^{1/2}			
Soave	1	0	0.08664RT _c /P _c	$[0.42748R^2 (T_c)^2/P_c][1+f\omega(1-(T_r)^{1/2})]^2$			
				donde: $f\omega = 0.48 + 1.574\omega - 0.176\omega^2$			
Peng-Robinson	2	-1	0.07780RT _c /P _c	$[0.45724R^{2}(T_{c})^{2}/P_{c}][1+f\omega(1-(T_{r})^{1/2})]^{2}$			
				donde: $f\omega = 0.37464 + 1.54226\omega - 0.26992\omega^2$			

8/13/10 Rafael Gamero

Gases Reales

27

Ecuaciones cúbicas

Ecuación de Benedict-Webb-Rubin

$$P = \frac{RT}{\overline{V}} + \frac{B_0RT - A_0 - C_0 / T^2}{\overline{V}^2} + \frac{bRT - a}{\overline{V}^3}$$
$$+ \frac{a\alpha}{\overline{V}^6} + \frac{c}{V^3T^2} \left(1 + \frac{\gamma}{\overline{V}^2}\right) exp\left(\frac{-\gamma}{\overline{V}^2}\right)$$

$$A_0, B_0, C_0, a, b, c, \alpha, \gamma$$

 $A_0, B_0, C_0, a, b, c, \alpha, \gamma$ Son característicos de cada gas

8/13/10

Gases Reales

Ecuaciones cúbicas

Existen otras ecuaciones de estado.

¿Cuáles otras puede agregar?

8/13/10 Rafael Gamero