
- ALGORITMOS
- METODOS DE REPRESENTACION
- INSTRUCCIONES DE ENTRADA, SALIDA Y ASIGNACION
- ALGORITMOS SECUENCIALES

INGENIERIA ELECTROMECANICA
PROGRAMACION EN COMPUTACION

En Pseudocódigo una Estructura Secuencial se representa de la siguiente forma:

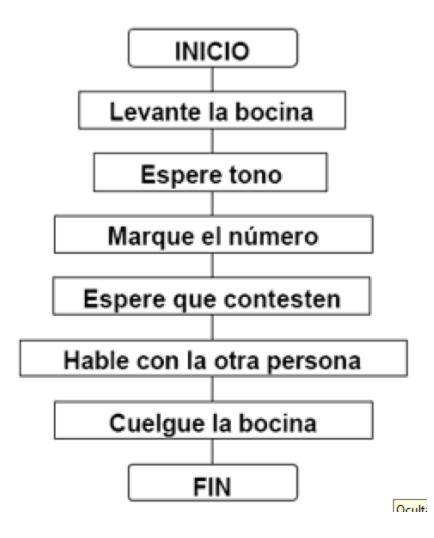
Pseudocódigo:

INICIO

Levante la bocina

Espere tono

Marque el número


Espere que contesten

Hable con la otra persona

Cuelgue la bocina

FIN

Diagrama de flujos:

Lectura o entrada de datos

La lectura o entrada de datos consiste en recibir desde un dispositivo de entrada (p.ej. el teclado) un valor o dato. Este dato va a ser almacenado en la variable que aparece a continuación de la instrucción. Esta operación se representa así:

Pseudocódigo:

LEA <variable>

Otras formas:

- Leer <variable>
- Ingresar <variable>

Diagrama de flujo:

Escritura o salida de datos

Consiste en mandar por un dispositivo de salida (p.ej. monitor o impresora) un resultado o mensaje. Esta instrucción presenta en pantalla el mensaje escrito entre comillas o el contenido de la variable. Este proceso se representa así como sigue:

Pseudocódigo:

ESCRIBA "MENSAJE CUALQUIERA" ESCRIBA
Variable>
ESCRIBA "La Variable es: ",

variable>

Otras formas:

- Mostrar <variable>
- Imprimir <variable>

Diagrama de flujo:

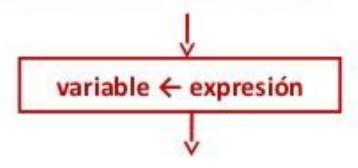
<MENSAJE O VARIABLE CUALQUIERA>

Asignación

La asignación consiste, en el paso de valores o resultados a una zona de la memoria. Dicha zona será reconocida con el nombre de la variable que recibe el valor. La asignación se puede clasificar de la siguiente forma:

- Simples: Consiste en pasar un valor constante a una variable (a ← 15)
- Contador: Consiste en usarla como un verificador del numero de veces que se realiza un proceso (a
 ← a + 1)
- Acumulador: Consiste en usarla como un sumador en un proceso (a ← a + b)
- De trabajo: Donde puede recibir el resultado de una operación matemática que involucre muchas variables (a ← c + b*2/4).

En general el formato a utilizar es el siguiente:


El símbolo ← debe leerse asigne.

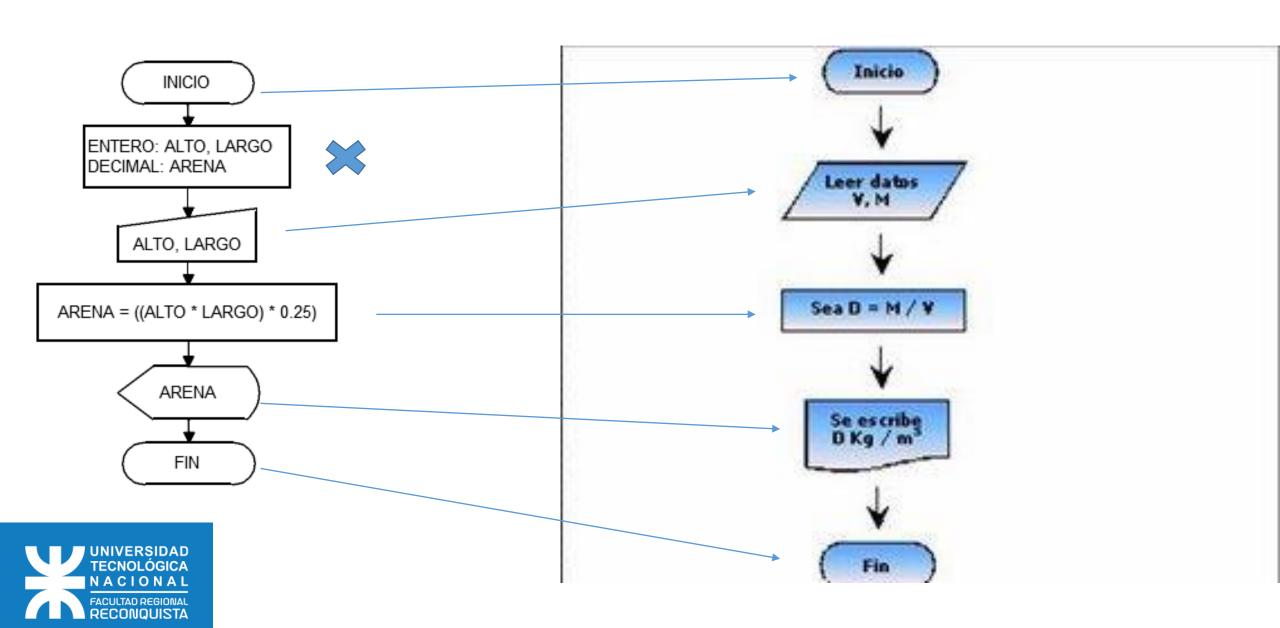
Asignación

 Una instrucción de asignación (o simplemente asignación) consiste en asignar el resultado de la evaluación de una expresión a una variable.

variable ← expresión

- El valor de la variable será el resultado de evaluar la expresión.
- El tipo de la variable y de la expresión deben coincidir.
- La asignación es una operación destructiva.

Ejemplos:


- a ← 3.0
- II. $b \leftarrow (2.0*a+4)/8$
- III. $a \leftarrow (b+2)*7$

A ← 3	A ← 13	número ← 6
B ← 5	B ← 15	número ← número * -3
C ← 2	C ← 12	
A ← B	A ← (C-B) *(B-A)	
B ← C	B ← A	
C ← A*B	C ← A*B	
A ← B		

A =	A =	número=	
B =	B =		
C =	C =		

EXISTEN DIFERENTES MANERAS DE REPRESERTAAR LOS DFD Y PSEUDOCODIGOS

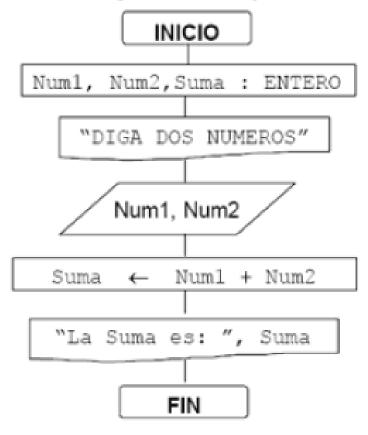
Inicio Leer Número_A Entrada Leer Número_B Suma = Número_A + Número_B Proceso Salida Escribir Suma Fin

Definición del problema: Elaborar un algoritmo para calcular la suma de dos números y representar el algoritmo gráficamente.

Análisis del problema	Algoritmo	Diagrama de flujo
Entrada: A y B representan los dos números. Proceso: Suma = A + B Salida: Resultado es Suma	1 INICIO 2 LEER A y A 3 SUMA = A + B 4 IMPRIMIR ("EL RESULTADO ES: SUMA") 5 FIN	Inicio A, B Suma = A + B El resultado es: Suma

Ejemplo de algoritmo secuencial.

 Algoritmo que lee cuatro números, obtiene y muestra el producto, suma y media de ellos.



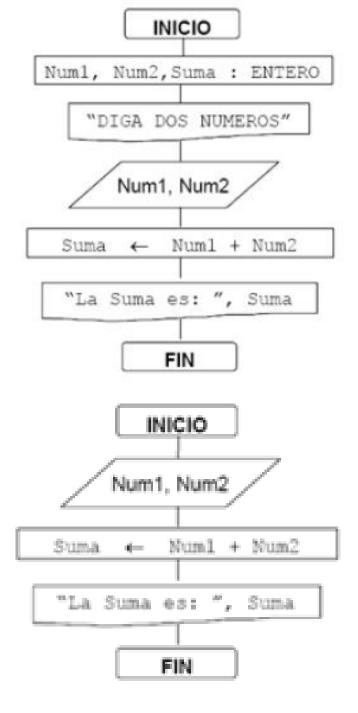
Ejemplo 1: Escriba un algoritmo que pregunte por dos números y muestre como resultado la suma de estos. Use Pseudocódigo y diagrama de flujos.

Pseudocódigo:

INICIO Num1, Num2,Suma : ENTERO ESCRIBA "Diga dos números: " LEA Num1, Num2 Suma ← Num1 + Num2 ESCRIBA "La Suma es:", Suma FIN

Diagrama de flujo:

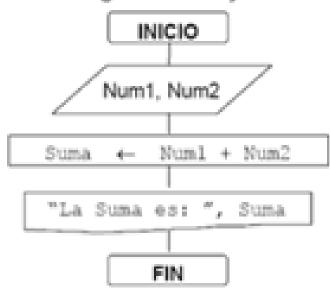
1


INICIO
Num1, Num2,Suma : ENTERO
ESCRIBA "Diga dos números: "
LEA Num1, Num2
Suma ← Num1 + Num2
ESCRIBA "La Suma es:", Suma
FIN

VARIAS MANERAS DIFERENTES DE REPRESENTACION

7

INICIO LEA Num1, Num2 Suma ← Num1 + Num2 ESCRIBA "La Suma es:", Suma FIN



7

Pseudocódigo:

Diagrama de flujo:

INICIO LEA Num1, Num2 Suma ← Num1 + Num2 ESCRIBA "La Suma es:", Suma FIN

VARIAS MANERAS DIFERENTES DE REPRESENTACION

Pseudocódigo:

Diagrama de flujo:

INICIO LEA Num1, Num2 Suma ← Num1 + Num2 ESCRIBA Suma FIN

3 sugerida

INGENIERIA ELECTROMECANICA
PROGRAMACION EN COMPUTACION

