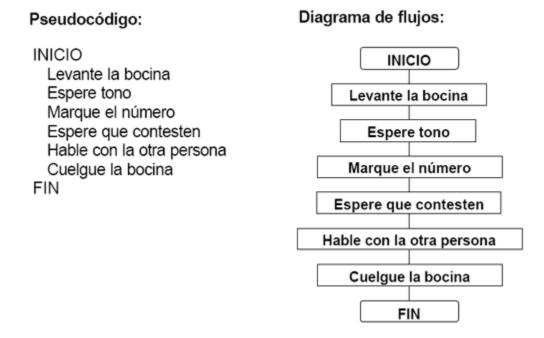
COMPUTACIÓN ALGORITMOS SECUENCIALES (UNIDAD II) PROF. PABLO CONTRAMAESTRE

Explicamos las estructuras secuenciales, cómo se representan en pseudocódigo y algunos ejemplos prácticos de las mismas.


La estructura secuencial es aquella en la que una acción (instrucción) sigue a otra en secuencia. Las tareas se suceden de tal modo que la salida de una es la entrada de la siguiente y así sucesivamente hasta el fin del proceso.

En Pseudocódigo una Estructura Secuencial se representa de la siguiente forma:

Observe el siguiente problema de tipo cotidiano y sus respectivos algoritmos representados en Pseudocódigo y en diagramas de flujos:

Tengo un teléfono y necesito llamar a alguien pero no sé como hacerlo.

El anterior ejemplo es un sencillo algoritmo de un problema cotidiano dado como muestra de una estructura secuencial. Ahora veremos los componentes que pertenecen a ella:

Asignación

La asignación consiste, en el paso de valores o resultados a una zona de la memoria. Dicha zona será reconocida con el nombre de la variable que recibe el valor. La asignación se puede clasificar de la siguiente forma:

- Simples: Consiste en pasar un valor constante a una variable (a \leftarrow 15)
- Contador: Consiste en usarla como un verificador del numero de veces que se realiza un proceso (a
 ← a + 1)
- Acumulador: Consiste en usarla como un sumador en un proceso (a \leftarrow a + b)
- De trabajo: Donde puede recibir el resultado de una operación matemática que involucre muchas variables (a \(c + b * 2/4 \)).

En general el formato a utilizar es el siguiente:

El símbolo ← debe leerse asigne.

Escritura o salida de datos

Consiste en mandar por un dispositivo de salida (p.ej. monitor o impresora) un resultado o mensaje. Esta instrucción presenta en pantalla el mensaje escrito entre comillas o el contenido de la variable. Este proceso se representa así como sigue:

Pseudocódigo:

ESCRIBA "MENSAJE CUALQUIERA" ESCRIBA <variable> ESCRIBA "La Variable es: ", <variable>

Diagrama de flujo:

<MENSAJE O VARIABLE CUALQUIERA>

Lectura o entrada de datos

La lectura o entrada de datos consiste en recibir desde un dispositivo de entrada (p.ej. el teclado) un valor o dato. Este dato va a ser almacenado en la variable que aparece a continuación de la instrucción. Esta operación se representa así:

Pseudocódigo:

LEA <variable>

Diagrama de flujo:

DECLARACIÓN DE VARIABLES Y CONSTANTES

La declaración de variables es un proceso que consiste en listar al principio del algoritmo todas las variables que se usarán, además de colocar el nombre de la variable se debe decir qué tipo de variable es.

Contador: ENTERO Edad, I: ENTERO

Direccion: CADENA DE CARACTERES

Salario_Basico : REAL Opcion : CARACTER

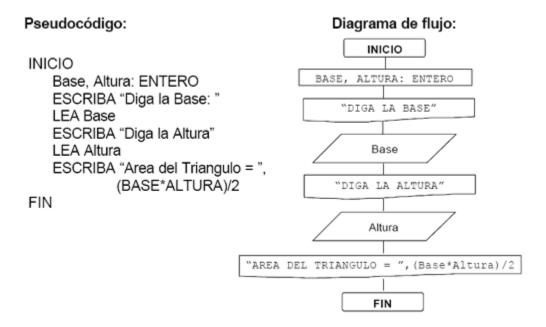
En la anterior declaración de variables Contador, Edad e I son declaradas de tipo entero; Salario_Basico es una variable de tipo real, Opción es de tipo carácter y la variable Direccion está declarada como una variable alfanumérica de cadena de caracteres.

En el momento de declarar constantes debe indicarse que lo es y colocarse su respectivo valor.

CONSTANTE Pi 3.14159

CONSTANTE Msg ĬPresione una tecla y continueł

CONSTANTE ALTURA 40


Cuando se trabaja con algoritmos por lo general no se acostumbra a declarar las variables ni tampoco constantes debido a razones de simplicidad, es decir, no es camisa de fuerza declarar las variables. Sin embargo en este curso lo haremos para todos los algoritmos que realicemos, con esto logramos hacerlos más entendibles y organizados y de paso permite acostumbrarnos a declararlas ya que la mayoría de los lenguajes de programación (entre ellos el C++) requieren que necesariamente se declaren las variables que se van a usar en los programas.

Veamos algunos ejemplos donde se aplique todo lo que hemos visto hasta el momento sobre algoritmos:

Ejemplo 1: Escriba un algoritmo que pregunte por dos números y muestre como resultado la suma de estos. Use Pseudocódigo y diagrama de flujos.

Pseudocódigo: Diagrama de flujo: INICIO INICIO Num1, Num2, Suma : ENTERO Num1, Num2, Suma : ENTERO ESCRIBA "Diga dos números: " "DIGA DOS NUMEROS" LEA Num1, Num2 Suma ← Num1 + Num2 ESCRIBA "La Suma es:". Suma Num1, Num2 FIN Suma Num1 + Num2"La Suma es: ", Suma FIN

Ejemplo 2: Escriba un algoritmo que permita conocer el área de un triángulo a partir de la base y la altura. Exprese el algoritmo usando Pseudocódigo y diagrama de flujos.

Fuente: http://www.desarrolloweb.com/articulos/2199.php