ESTRUCTURAS CONDICIONALES

INGENIERIA ELECTROMECANICA
PROGRAMACION EN COMPUTACION

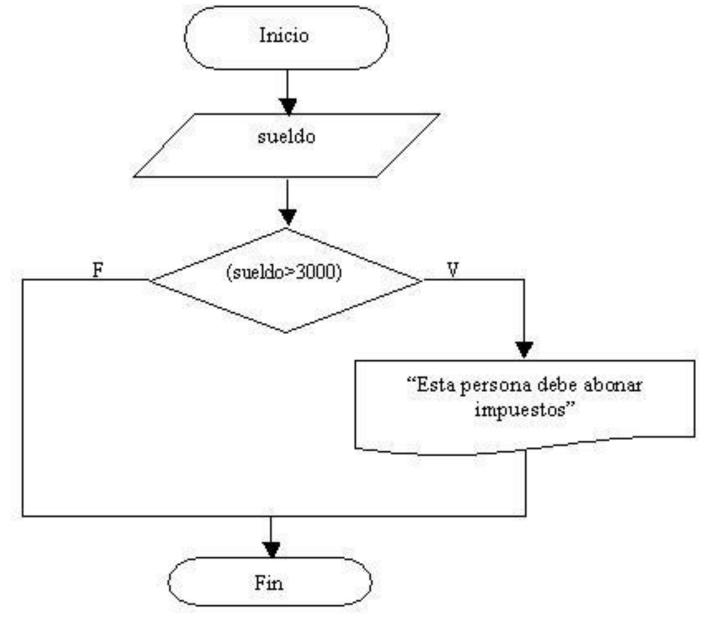
Las estructuras **condicionales** comparan para que en base al resultado de esta comparación, se siga un curso de acción dentro del programa. Cabe mencionar que la comparación se puede hacer contra otra variable o contra una constante, según se necesite

- Una variable contra otra a > b
- Una variable contra una expresión a > b +1
- Una variable contra un valor a = 1

Una expresión contra otra
 A+ b >= c +1

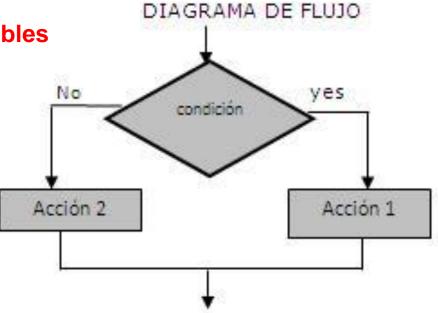
Concatenación de variables, operadores relacionales y lógicos

$$(a + c <> a+1)$$
 and $(d > a)$


Estructuras selectivas simples

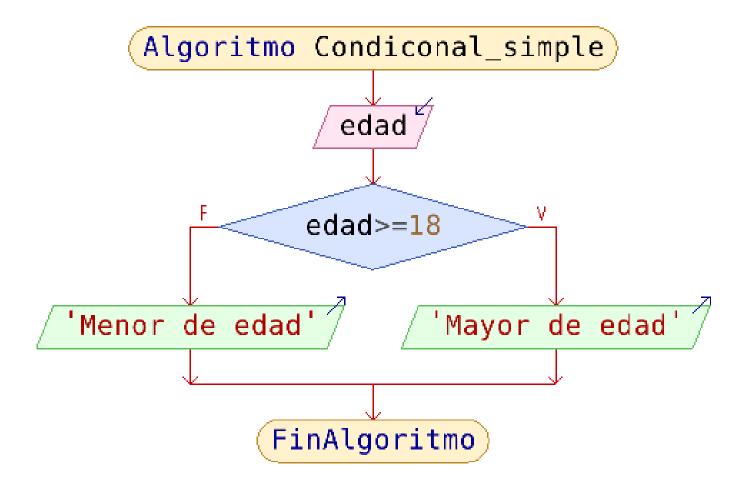
PSEUDOCODIGO EN ESPAÑOL	PSEUDOCÓDIGO EN INGLÉS	
Si < condición > Entonces	If <condición> then</condición>	
<acción si=""></acción>	<acción si=""></acción>	
Fin_si	End_if	

https://virtual.itca.edu.sv/Mediadores/dlp/t2_estructuras_bsicas_de_programacin.html



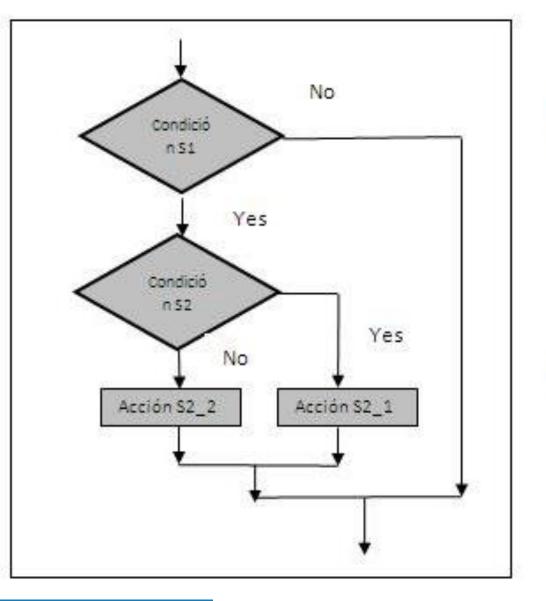
INGENIERIA ELECTROMECANICA
PROGRAMACION EN COMPUTACION

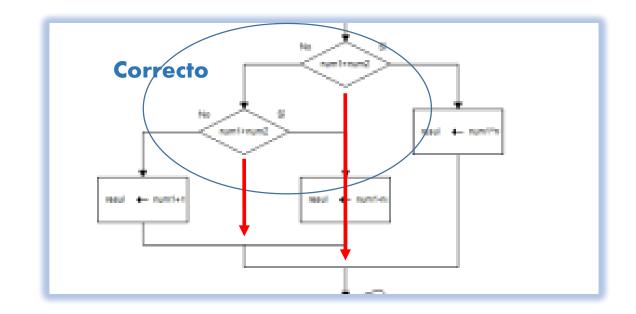
Estructuras selectivas dobles


PSEUDOCÓDIGO EN ESPAÑOL

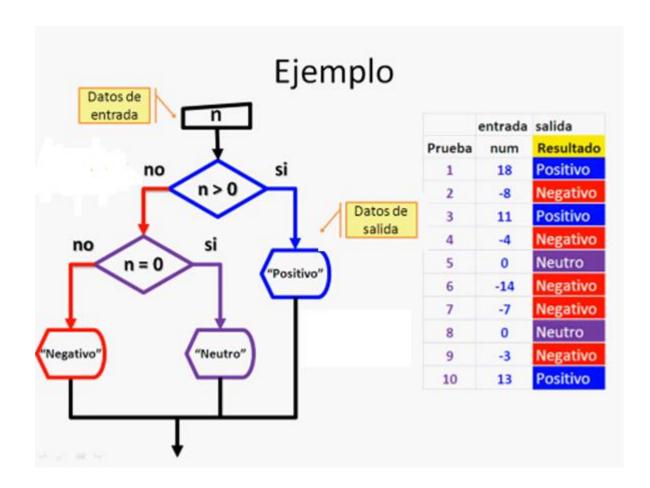
Si <condición> Entonces <acción 1> Sino <acción 2> Fin_si

PSEUDOCÓDIGO EN INGLÉS


If <condición> then <acción 1> Else <acción 2> End_if

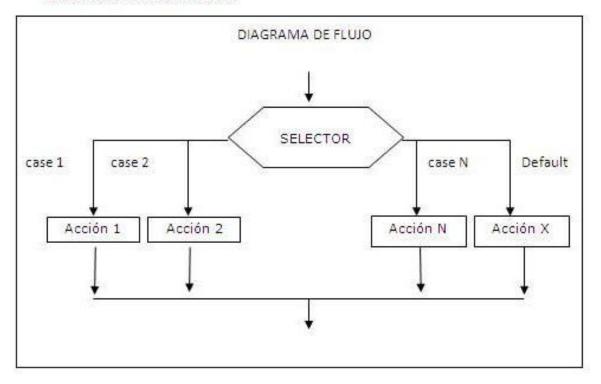

https://virtual.itca.edu.sv/Mediadores/dlp/t2 estructuras bsicas de programacin.html

Estructuras selectivas compuestas


```
PSEUDOCÓDIGO EN ESPAÑOL
                                                 PSEUDOCÓDIGO EN INGLÉS
Si < condición S1 > Entonces
                                                 If < condición S1> Then
    Si < condición S2> entonces
                                                    If <condición S2> Then
         <acción S21>
                                                        <acción S21>
    Sino
                                                    Else
          <acción S22>
                                                        <acción S22>
    Fin_si
                                                    End_if
Fin_si
                                                 End_if
```


INGENIERIA ELECTROMECANICA PROGRAMACION EN COMPUTACION

EJMEPLO: determinar si un número es positivo, negativo o cero


Este es un caso donde se necesita una estructura anidada ya que con un condicional no podemos discriminar las 3 alternativas.

Como este slide no fue presentado en la clase, les sugiero ver el siguiente video

https://youtu.be/3w3Ue1LkPNI

REPRESENTACIÓN GRÁFICA:

Estructuras selectivas múltiples

PSEUDOCÓDIGO EN ESPAÑOL En caso que Selector sea Caso valor 1 Acción 1 break Caso valor 2 Acción 2 break Caso valor N Acción N break Otro caso Acción X Fin Caso que

PSEUDOCÓDIGO EN INGLES Switch (expression) Case 1: Acción 1 break Case 2: Acción 2 break Case N: Acción N break Default: Acción X break End_Case

Operadores Relacionales:

Operación	Símbolo	Sintaxis
Mayor que	>	valor1 > valor2
Menor que	<	valor1 < valor2
Mayor igual que	>=	valor1 >= valor2
Menor igual que	<=	valor1 <= valor2
Igual que	=	valor1 = valor2
Diferente de	!=	valor1 != valor2

Operadores Lógicos

Operación	Símbolo	Sintaxis
No	not	not valor
Υ	and	valor1 and valor2
0	or	valor1 or valor2
O exclusivo	xor	valor1 xor valor2
No Y	nand	valor1 nand valor2
No O	nor	valor1 nor valor2
No O exclusivo	xnor	valor1 xnor valor2

Expresiones Lógicas - Operadores Relacionales y Lógicos

- Una expresión lógica es aquella que sólo puede devolver uno de dos valores booleanos: Verdadero o Falso.
- Los operadores que pueden aparecer en una expresión lógica son de dos tipos: lógicos y relacionales.
- Los operadores lógicos sólo trabajan sobre expresiones o datos que retornan valores booleanos.
- Los operadores relacionales trabajan con expresiones numéricas para realizar comparaciones que retornan un valor booleano.
- Las expresiones combinan operadores lógicos y relacionales.

Tablas de verdad operadores lógicos

El valor de verdad con el operador AND es verdadero si todos los operandos o expresiones son verdaderas

OPERADOR AND

OP1	OP2	Salida
V	V	V
V	F	F
F	V	F
F	F	F

OPERADOR OR

OP1	OP2	Salida
V	V	V
V	F	V
F	V	V
F	F	F

El valor de verdad con el operador OR es verdadero si alguno de los operandos o expresiones son verdaderas

OPERADOR NOT

OP1	Salida
٧	F
F	V

El operador NOT cambia el valor de verdad

En el caso de que las variables tomen estos valores

```
a) 1 > = 5 or 3 = 8 and 6 < 9 or 7 > 7
        or F and V or F
      F or
                   or F
          F
                        or F
b) 2 > = 2 or not 4 < 12 and 5 < > 6 and 8 < = 10
      or not V and V and V
       or F and V and V
       or F and V
       or F
    ٧
```

