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A B S T R A C T

As an important part of intelligent machining system, tool wear monitoring plays a crucial role in ensuring workpiece quality and process safety. At
present, the models based on tool wear monitoring mainly include data-driven models and physics-based models. However, data-driven models are
limited by physical inconsistency, and physics-based models usually lack accurate description of the machining process for process control. To solve
these issues, this study proposes a physics-guided deep learning model for tool wear monitoring. Firstly, a dual scale time series model is established,
and physical constraints are added to the model according to the degradation characteristics of tool wear. Secondly, the physics-based loss function
is introduced through the physical model of tool wear to constrain the training process of the model. Finally, a model agnostic meta learning al-
gorithm is used to train a pre-weight for the model, so that the model can be quickly applied to different processing conditions. The experimental
results show that the physics-guided deep learning model proposed has good accuracy and physical consistency. In the high-speed milling tests, the
average MAPE of tool wear prediction is 0.039, and the physical consistency index is 0.035 μm.

1. Introduction

As one of the important technologies in modern precision machining system, high-speed milling is widely applied in the industry of
aerospace, mold manufacturing, medical devices and other precision and complex parts [1,2]. Condition monitoring and fault diag-
nosis during machining are crucial for improving the reliability of machining system operation and reducing the cost of downtime
maintenance [3,4]. It has been shown that the downtime of tool faults accounts for 20 % [5] of the whole machine tool downtime in
high-speed milling. By on-line monitoring of tool wear condition during processing, the cost of tool can be saved by about 40 % [6].
Therefore, online monitoring of tool wear condition is crucial to the machining process control and optimization. The current tool wear
monitoring (TWM) models are mainly divided into physical-based models, data-driven models and hybrid models [7,8].

Physics-based tool wear monitoring models can be divided into empirical formula method and mechanism modeling method [9].
The former establishes tool wear monitoring models through extensive experiments and experience accumulation. For example, Zhang
et al. [10] established an empirical model between the multi-channel specific cutting force coefficient (SCFC) and tool wear based on
the relationship between milling forces, spindle box vibration, and cutting torque. Bai et al. [11] established a semi-analytical model
by experimentally determining two wear coefficients. Zhu and Zhang [12] considered the characteristics of tool wear at different
stages and proposed a general tool wear model with adjustable coefficients. The latter is to establish the monitoring model by studying
the mechanism of tool wear. For example, Yang et al. [13] used a mixed mechanism wear model based on abrasive wear, adhesive
wear, and diffusion wear to predict tool wear values. Das et al. [14] established a tool wear model based on the stress distribution and
temperature characteristics on the rake face. Seeholzer et al. [15] proposed a new analysis model based on fiber orientation and tool
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structure to predict tool wear in carbon fiber reinforced polymer machining.
Under the background of rapid development of industrial big data and deep learning technology, the data-driven tool wear

monitoring model has attracted wide attention [16]. For data-driven models, they predict tool wear through machine learning or deep
learning. For example, Zhou et al. [17] proposed an improved multi-scale edge marking graph neural network to predict tool wear
conditions by codingmulti-dimensional data into a gray recursive graph to extract wear features. Guo et al. [18] proposed amulti-scale
pyramid attention network for predicting tool wear conditions based on interpretability. Marei et al. [19] proposed a convolutional
neural network based on transfer learning to solve the problem of limited data.

Although the methods of physical models and data models are widely studied today, they are rarely applied to actual production
processes. This is because they both have their own limitations or drawbacks. For physical models, they are established under ideal
experimental conditions, so physical models usually cannot accurately reflect the actual processing process. And these physical models
are not subject to real-time feedback control of the machining process, so there may be error accumulation [20,21]. For data-driven
models, firstly, they belong to the black box model with poor interpretability [22]. Secondly, in order to ensure the accuracy of model
predictions, these models rely entirely on the learning of a large amount of full life experimental data, which not only requires
expensive experimental costs, but also carries the risk of overfitting [23].

Based on the limitations of the aforementioned models, researchers have combined the strengths of both approaches by using
physical properties or laws to drive or constrain data models, ultimately achieving the fusion of mechanisms and data [24,25]. In the
study of tool condition monitoring, the hybrid models of physics and data can be roughly divided into three categories [26]:

1) The hybrid model based on the combination of data model and physical model, which fuse the results to improve the model
performance. Huang et al. [27] proposed a hybrid data-driven physical model framework for predicting tool wear. The physical
model establishes the mathematical description of tool wear degradation process. The data driven model is based on multilayer
perceptron to predict tool wear. Hanachi et al. [28] proposed a hybrid framework to predict the tool wear condition by combining
the results based on the physical model and the data-driven model through the regularization particle filter algorithm. Ma et al.
[29] proposed a hybrid-driven probabilistic state space model for tool wear monitoring, which innovatively developed Gaussian
processes to integrate data mining and physical models from a probabilistic perspective.

2) The hybrid model based on physical pre-training improves the training and consistency of the model on the basis of constrained
model initialization. Jia et al. [30] proposed a physically guided recurrent neural network model. An important aspect of this
method lies in its ability to incorporate the knowledge encoded in physics-based models. This allows training the model using very
few true observed data while also ensuring high prediction accuracy. Yang et al. [31] used a hybrid model comprised of a physics-
basedmodel and a data-drivenmodel to generate power and force signals, followed by Page’s cumulative sum test for detecting tool
wear on-line using the computer numerical control machine measurements.

3) The hybrid model based on physics-guided loss function, which constructs a regularized loss term through prior knowledge or
physical model to improve the physical consistency and generalization ability of the data model. In the process of predicting tool
wear conditions, Wang et al. [32] added monotonicity loss function to the proposed end-to-end deep learning model to capture the
degradation characteristics in these sequence outputs. Wang et al. [33] proposed a modeling strategy of cross physical data fusion,
and added a loss function to the model to eliminate the physical inconsistency in the data-driven model. Li et al. [34] proposed a
physically informed loss term based on the monotonic characteristics of tool wear to learn the robust relationship between tool
wear rate and force during the life cycle, solving the difficulty of parameter estimation. In the process of predicting fatigue wear life,
Zhou et al. [35] constructed a composite loss function with physical constraints. By using a negative log likelihood function to
consider fault data and depletion data, they forced the network training process to learn a continuous function to describe the
relationship between pressure and life. In predicting the surface roughness of milling processes, Zeng et al. [36] added physical
consistency constraints to the loss function, allowing the model to predict surface roughness on limited experimental data.
Compared with the best comparison method, the average absolute error on the test set decreased by an average of 3.029 %.

Although the hybrid model based on current tool wear condition monitoring has largely addressed the limitations of physical-based
and data-driven models, it also has its own limitations. Firstly, the physical mechanism in the current hybrid model is mainly based on
prior knowledge of tool wear, that is, the trend of monotonic increase in tool wear as the process progresses. It does not reflect the deep
physical knowledge of the variation of tool wear rate in different wear stages, and lacks accurate description of nonlinear complex
systems. Secondly, although pre-training-based hybrid models have partially resolved the issue of data model initialization and
reduced the training difficulty of data models, they require significant time and financial costs to be pre-trained for different operating
conditions in intelligent machining processes. Consequently, this pre-training-based hybrid model performs poorly in complex sce-
narios. Finally, many current hybrid models only loosely combine predictions from both sides, and their predictions heavily rely on the
prediction errors of the physical and data models. The effectiveness of the hybrid model diminishes when the prediction errors of the
physical and data models exceed a certain threshold. Therefore, from the fundamental problem of data models lacking guidance from
physical mechanisms has not been effectively solved from a model structure perspective.

To meet there difficulties, this study proposes a physics-guided deep learning model for monitoring tool wear. Based on the
characteristics of the force signals and the tool wear process, a dual scale time series model is established. To reduce the physical
inconsistency of the data model and minimize the parameter optimization space of the data model, a tool wear mechanism and a
physical loss penalty term are introduced to constrain the training process of the data model. To predict tool wear under multiple
process conditions, the model parameters are updated using a model agnostic meta learning (MAML) algorithm, which obtains
generalized model parameters and improves the model’s generalization performance. The organizational structure of this paper is as
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follows: Section 2 introduces the framework of tool wear monitoring using a physics-guided deep learning model; Section 3 provides a
detailed description of the physics-guided deep learning model for tool wear monitoring; Section 4 evaluates the model’s performance
using experimental data sets and baseline data sets from milling; and Section 5 presents the conclusions of this study.

2. The framework of tool wear monitoring by physics-guided deep learning model

Compared to traditional milling, high-speed milling is more susceptible to tool wear due to its large cutting speed and high cutting
accuracy [37,38]. Therefore, tool wear monitoring plays an important role in ensuring machining quality and efficiency. Milling force,
as a direct manifestation of the interaction between the tool and the workpiece, is a highly sensitive signal for tool wear monitoring
[39–41]. However, due to the discontinuity of the milling process and the asynchrony of signal acquisition, the milling force signal and
tool wear value belong to different time series signal types at different time scales. Their characteristics are as follows:

1) For the milling force signal, it is regarded as the superposition of static force and dynamic force in our research. The static force is
the force generated by the discontinuous milling process of the milling cutter, while the dynamic force is mainly the additional
force generated by tool wear. Therefore, milling force can be seen as a locally periodic high-frequency time series signal.

2) For the process of tool wear, it can be regarded as a gradual degradation process. The tool wear condition gradually evolves from a
slightly wear condition to a severely wear condition, and the tool wear process has a monotonic increasing characteristic.

In order to accurately predict changes in tool wear conditions during the machining process in real-time, a physics-guided deep
learning model is constructed in this study. The prediction process of the model is shown in Fig. 1. Firstly, based on the above analysis
of the characteristics of milling force and tool wear, a dual scale time series model is constructed. Based on the prior knowledge and
physical model of tool wear, monotonicity constraints and physics-based loss functions are added to the structure of the dual scale time
series model. This reduces the physical inconsistency of model prediction and makes the training process more stable. Secondly, in the
training process of the model, the MAML algorithm is used to train a pre-weight for the model, which enables the model to quickly
adapt to different processing conditions, thus improving the generalization ability of the model. Finally, the trained model is used for
online tool wear monitoring.

3. The physics-guided deep learning model for tool wear condition monitoring

3.1. The structure of the physics-guided deep learning model

For the research of tool wear condition monitoring, the traditional deep learning method completely relies on the powerful
nonlinear fitting capabilities of neural networks to establish the nonlinear mapping relationship between monitoring signals and tool
wear conditions, without considering the potential law of tool wear degradation process. Moreover, based on the characteristics of the
monitoring signal and the tool wear value described in section II, forcibly relying on the deep learning method to predict the tool wear

Fig. 1. Framework of the physics-guided deep learning model for tool wear monitoring (High-Rate and Low-Rate represent two different time scales
of local and global changes in the signal, respectively; X represents the milling force signal collected by the sensor, which is the input of the model; Y
represents the prediction result of the model; SDAGD refers to Stochastic Diagonal Approximate Gradient Descent used for optimizing the model
parameters; φ0 represents the initial parameters of the model learned based on MAML, and φi (i = 1…n) refers to the optimal model parameters
under the i-th subtask.).
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condition will inevitably lead to too many network layers and prone to overfitting. Based on the above reasons, this study proposes a
dual scale time series model based on physical guidance to predict tool wear values. In the selection of the basic time series network,
this study takes into consideration that GRU has fewer model parameters compared to LSTM. Therefore, the complexity of the GRU
model will be relatively lower, making it more suitable for applications with limited training resources. The specific model architecture
is shown in Fig. 2.

It mainly consists of two parts: (1) A gated recurrent neural network layer (GRU) with shared weights, which extracts milling force
features from a given milling force signal segment; (2) The physics-guided GRU model (PGA-GRU), which predicts the tool wear
condition according to the milling force characteristics extracted from the previous layer. We will describe these two parts in detail
below.

3.1.1. The gated recurrent neural network
The milling force signal is a kind of time series signal that can reflect the condition change of machining process. For the processing

of time series signal, this paper uses GRU model to extract the features that can reflect the tool wear condition. GRU network is a
recurrent neural network, which has a simpler structure than LSTM network. It is proposed to solve the long-termmemory problem and
the gradient explosion problem in back propagation. Compared with LSTM network, GRU network has only two gates and cancels the
memory unit for linear self-updating [42]. This makes the GRU network have fewer parameters and simpler structure, so it is easier to
train the model when there are fewer training samples. The forward propagation formula for GRU network is as follows:

rt = σ(Wrxt + Rrht− 1 + br) (1)

zt = σ(Wzxt + Rzht− 1 + bz) (2)

ht = tanh(Whxt + Rh(rt ∗ ht− 1) + bh) (3)

ht = (1 − zt) ∗ ht− 1+ zt ∗ ht (4)

WhereW and R are the weight matrices of input state xt and hidden state ht− 1; b represents bias term; r, z and h represent reset gate,
update gate and candidate condition respectively; σ(x) = sigmoid(x) represent the activation function of the gate; tanh(x) represents

1 2 3 n

ht-1

Relu

1-rt
zt

ht

xt

abs absmax

ht

th

Fig. 2. Physics-guided dual scale time series model.
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the activation function from input to output. The structure of GRU network is shown in Fig. 3(a).

3.1.2. The physics-guided GRU model
In the milling process, tool wear has irreversible physical characteristics with processing time. For the traditional deep learning

model, it only establishes the relationship between the observed signal and the hidden tool wear condition, that is, it uses the in-
formation of the observed signal to infer the degradation process of the hidden tool wear condition, without considering the potential
physical relationship of the degradation process of the hidden tool wear condition. Based on the above problems, this study constructs
a GRU model based on physical guidance. The framework of this model is shown in Fig. 3(b).

Firstly, compared with the original GRUmodel, this model adds a monotonic increasing layer, which makes the results predicted by
the model more in line with the real change law of tool wear. Secondly, the model also replaces the input–output activation function
with the Relu activation function. Compared with tanh activation function, Relu has a wider activation boundary, which can effectively
suppress the gradient disappearance problem. Moreover, due to the low computational complexity of Relu activation function, its
computational speed is faster. The forward propagation process of the physics-guided GRU model proposed in this study is as follows:

rt = σ(Wrxt + Rrht− 1 + br) (5)

zt = σ(Wzxt + Rzht− 1 + bz) (6)

ht = Relu(Whxt + Rh(rt ∗ ht− 1) + bh) (7)

ht = (1 − zt) ∗ ht− 1+ zt ∗ ht (8)

ĥt = max(abs(ht− 1), abs(ht)) (9)

Therefore, by introducing a monotonicity mechanism in the GRU model, it provides a constraint that aligns with our understanding,
enabling the model to capture underlying relationships and behaviors according to our intentions. This improves the interpretability of
the model and enhances the physical consistency of the predicted results.

3.2. Loss function of the physics-guided deep learning model

3.2.1. The loss function of mean square error
For the data-driven model, the loss function is the mean squared error between the model predicted values and the actual ob-

servations, as shown in the following formula:

argmin
f
LossData(ω̂,ω) = argmin

f

1
n
∑n

i=1
(ωi − ω̂i)

2 (10)

Where ω is the model predicted values and ω̂ is the actual observations.
For the data-driven model, the prediction accuracy is affected by the size of the training set and the complexity of the physical

model of the prediction problem. When the training set of the model is small or the physical model of the prediction problem is
complex, the prediction effect of the data model may not be very good. To solve the above problems, this study improves the prediction
accuracy of the model by adding physical constraints to the model loss function.

3.2.2. The loss function of tool wear mechanism
For the construction of the physical loss function for tool wear mechanism, we first fit the parameters of the physical model for tool

wear based on the offline measured tool wear values. Then, we establish the mechanistic relationship between adjacent tool wear
values based on the physical function of tool wear. Finally, we incorporate the established relationship between adjacent tool wear

Fig. 3. Structure diagram of GRU model.
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values into the neural network to constrain the prediction results of the model. The detailed discussion of this process is shown below.
During the machining process, tool wear is unavoidable due to excessive friction and heat generated on the surface of the tool. The

evolution process of tool wear can be divided into three stages: initial wear stage, steady wear stage, and severe wear stage. In order to
accurately describe this degradation process, researchers have developed two approaches. On the one hand, researchers have
established a tool wear prediction model based on accumulated work experience and experimental data of tool wear, which is called
tool wear modeling based on empirical formulas [10–12]. On the other hand, researchers have established a tool wear prediction
model by studying the mechanism of tool wear, which is called tool wear modeling based on mechanism [13–15].

Due to the variation of tool wear rate with different wear stages, Zhu et al. [12] established an empirical tool flank wear model
based on adjustable model coefficients. According to the physical process of wear, the model uses logarithmic polynomial and high
order exponential functions to fit the early wear and late wear of tools. When the model parameters are known, the model is a function
of tool wear and milling time. The details are as follows:

ω(t) = Aln(Bt + 1)+CtD (11)

Where ω represents the flank wear width, t represents the milling time, and A, B, C and D represent the parameters of the model. Due to
the adjustability of the model parameters, the model can easily predict the tool wear condition under variable processing conditions.

Although physical models of tool wear have been widely studied, they have inherent shortcomings. The physical model based on
ideal conditions often lacks accurate description of the actual machining process, and the models are not subject to real-time feedback
control, leading to error accumulation. For these reasons, this paper uses the numerical analysis method to improve the physical model
to obtain the relationship between the tool wear condition at the current time and the tool wear condition at the previous time, so as to
establish the relationship between the physical model and the machining process. The specific process is as follows:

F =

AB
Bt+1+ CDtD− 1

Aln(Bt + 1) + CtD
ω (12)

K1 = F(tn,ωn) (13)

K2 = F(tn +
1
2
h,ωn +

1
2
hK1) (14)

K3 = F(tn +
1
2
h,ωn +

1
2
hK2) (15)

K4 = F(tn + h,ωn + hK3) (16)

ωn + 1 = ωn+ h(1/6K1 + 2/6K2 + 2/6K3 + 1/6K4) (17)

In the equations (12–17) above, equation (12) converts the formula for tool wear as a function of time into an ordinary differential
equation, thereby transforming the relationship between tool wear and time into a relationship involving tool wear, tool wear rate, and
time. Equation (12) establishes the relationship between the physical model and the machining process through numerical analysis,
serving as a prerequisite. In equations (13–16), K1, K2, K3, and K4 represent the slopes at the starting point, midpoint, 3/4 point, and
endpoint, respectively, in the 4-order Runge-Kutta method. These intermediate variables are crucial in iteratively estimating the
changes and improving the accuracy of the numerical solution. Equation (17) calculates the weighted average of the intermediate
variables (K1, K2, K3, and K4) obtained from equations (13–16) and adds it to the current position to obtain an approximate value for
the next step’s position. Here, h represents the time step size.

The physical relationship between adjacent tool wear conditions established by equations (12–17) is used to construct a physical

Fig. 4. Loss function structure of tool wear mechanism.
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loss term that constrains the relationship between adjacent predicted wear values of the model and reduces physical inconsistency in
model predictions. In addition, in actual machining, real wear label values can only be collected offline, which means that monitoring
signals do not have enough label matches. Therefore, the physical labels generated by the physical loss term also alleviates the problem
of lack of real wear label samples to a certain extent. For the rationality of the physical loss function, firstly, the physical model is an
adjustable coefficient tool wear model established based on the wear characteristics of different wear stages, which can accurately
reflect the evolution process of wear conditions. Secondly, the physical loss function imposes constraints on the data model. It can be
seen as introducing learning biases with clear physical meanings to guide the learning process of the data model, making it tend to
converge towards solutions with underlying physical meanings.

The loss function structure of tool wear mechanism is shown in Fig. 4, the physics-based loss function is the mean square error
between the labels generated by the physical model and the predicted values of the model. The process is as follows:

ωi = ωi− 1 + h(1/6K1 + 2/6K2 + 2/6K3 + 1/6K4) (18)

LossPhy(ω) =
1
n
∑n

i=2
(ωi − ωi)

2 (19)

Where ωi is the physical prediction. The physics-based loss function establishes the physical relationship between adjacent wear
conditions, and the physical wear value in equation (18) is calculated from the model prediction value at the previous time. Therefore,
the difference between the predicted values of the physics-based tool wear model and the predicted values of the physical model
indirectly reflects the physical inconsistency of the prediction results at the adjacent time of the model. By back propagation of error to
update the network weights, the predicted tool wear condition can be more consistent with the physical law of tool wear, avoiding
unrealistic predictions that may occur in purely data-driven models. Additionally, the physical loss function based on the physical
relationships between adjacent wear conditions can fill in missing wear information or extrapolate from existing wear values, thereby
achieving more robust and reliable predictions.

In summary, the structure of the loss function of the physics-guided deep learning model is as follows:

argmin
f
Loss(ω̂,ω) = argmin

f
(LossData(ω̂,ω) + λPhyLossPhy(ω)) (20)

Where λPhy represents the physical loss weight term. The optimization process of the model is realized by gradient derivation and back
propagation of the loss value. The selection of the weight of the physical loss term has a great impact on the training process of the
model and the final prediction accuracy. Therefore, in different stages of model training, it is necessary to adjust the weight of physical
loss term to avoid the influence of invalid loss on model training. For the setting of the weight of the physical loss term, this study
considers the following factors:

• The value of the weighting coefficient is determined according to the size relationship between the data loss term and the physical
loss term, so as to avoid that the update process of the network is dominated by a single loss term.

• In different training stages, the weighting coefficients of the loss items should also be adjusted to avoid useless loss values updating
the network weights so that the network does not converge in the training process. In this study, we used “Epoch” to dynamically
adjust the weights between the physical loss and the data loss. During the initial stages of training, with randomly initialized
network weights, a lower weight value λPhy was used for the physical loss. This allowed the model to primarily focus on training
based on the data loss. In the later stages of model training, when the descent rate of the data loss function becomes significantly
slower, the weight value λ for the physical loss is increased. This further improves the training efficiency of the model by incor-
porating physical consistency.

Through the above discussion of the physical loss weight λPhy, the selection of the loss weight λPhy is related to LossData and LossPhy,
and also related to the training process of the network. Thus the formula for the weight λPhy is as follows:

λPhy = 1 − (Sigmoid
LossData
LossPhy

)
epoch (21)

3.3. The model performance evaluation methods

In order to verify the accuracy of the model proposed in this study, this paper uses three evaluation indicators: mean absolute error
(MAE), mean absolute error percentage (MAPE) and physical consistency (Consistency) to quantify the prediction effect of different
methods on tool wear. MAE and MAPE are used to characterize the accuracy of model prediction. Consistency refers to the degree of
violating the irreversibility of tool wear. In this paper, the average absolute error of the wear value predicted by the model in violation
of the physical relationship value is taken as the physical consistency index. The formulas are as follows:

MAE =
1
n
∑n

i=1
|ŷi − yi| (22)
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MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
ŷi − yi
yi

⃒
⃒
⃒
⃒ (23)

Consistency =
1
n
∑n

i=1

{
|yi+1 − yi| if yi+1 − yi⩽0
0 if yi+1 − yi > 0 (24)

4. Model validation and application

4.1. Experimental setup

High-speed milling is generally defined as milling with a small material removal area but fast speed. Compared to traditional
milling, high-speedmilling provides faster speeds (15000 rpm to 40000 rpm), higher accuracy, and lower tool wear. In our experiment,
we used a micro milling cutter with a diameter of 0.5 mm. It typically operates at the micron scale. This micro milling process utilizes
high-speed rotating tools to rapidly remove material from the workpiece with small cutting parameters and relatively high feed rates.
Therefore, from a process perspective, micro milling can be seen as a special form of high-speed milling that focuses on smaller scales
and higher precision.

The tool used in the experiment is a double-edged cemented carbide micro end milling cutter produced by Union, Japan, and the
milling cutter coating is UT coating. The workpiece material is steel (40CrNi2Mo). In order to verify the influence of machining
conditions on tool wear, Taguchi experiment was used to select the feed rate per tooth, spindle speed and axial cutting depth as the
influencing factors. Each influencing factor is divided into 3 levels, and milling experiments under 9 processing conditions are carried
out. The parameter settings are shown in Table 1 below:

The milling force signal acquisition device and the tool wear value measurement device are shown in Fig. 5 below. For the
acquisition device of the milling force signal, this experiment uses a three-channel dynamometer with a signal amplifier and a data
acquisition card for acquisition. The dynamometer model is Kistler 9119A, with a sampling frequency of 24000 Hz. The acquisition
process of the force signal involves fixing the force sensor at the bottom of the workpiece for measurement. There is no manual
intervention throughout the acquisition process, so it is generally assumed that the measurement process is not affected by human
measurement errors. Regarding the instrumental measurement error, the Kistler 9119A triaxial force sensor has a resolution less than
0.002 N and a sensitivity of approximately -13pC/N~-26pC/N. In our experiment, the minimum change interval of the force signal
within one rotation cycle is approximately 0.3 N, which is two orders of magnitude larger than the sensor’s resolution (0.3 N ≫ 0.002
N). Therefore, the error generated by the instrumental measurement can be considered negligible.

For the collection of tool wear tags, the tool wear observation platform consisting of a coordinate regulator, an industrial camera, a
telecentric lens, and a light source collects tool wear values. The resolution of the industrial camera is 2 million pixels. The telecentric
lens model is VS-TCH6-65 with a magnification of 6× . The selected light source is a circular vertical light source with adjustable
brightness. The offline collection frequency of tool wear tags is observed after the tool milling is fixed length, and the observation
process covers the entire tool wear cycle. The measurement value of tool wear is obtained by averaging five measurements of tool wear
images captured by an electron microscopy. The errors generated during the measurement process can be categorized into human
measurement error (ΔA) and instrumental measurement error (ΔB). The human measurement error (ΔA) is calculated based on five
independent measurement values. The instrumental measurement error (ΔB) is determined using the distortion rate of an electron
microscope. Finally, the two uncertainty error components are squared, summed, and combined to obtain the final measurement error
(Δ). The final calculation results indicate that the error resulting from the uncertainty of the measurement can be considered negligible
compared to the final measured tool wear value. Taking an example of the measurement process for a wear value, the calculation
process is as follows:

y =
1
5
(0.074182+ 0.074081+ 0.073273+ 0.075371+ 0.073265) = 0.074034mm (25)

Table 1
Parameter setting of the experiments.

Test Spindle n speed(rpm) Cutting ap depth(μm) Feed ft (μm/tooth) Number of measurements

T1 18,000 60 2 10
T2 18,000 80 4 10
T3 18,000 100 6 16
T4 24,000 80 6 16
T5 30,000 60 6 15
T6 24,000 60 4 9
T7 24,000 100 2 14
T8 30,000 80 2 10
T9 30,000 100 4 11
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ΔA =
1̅
̅̅
5

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
5
∑5

i=1
(yi − y)2

√
√
√
√ = 0.000345mm (26)

ΔB =
y× 0.032%

̅̅̅
3

√ = 0.00001368mm (27)

Δ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δ2
A + Δ2

B

√

= 0.000345271mm (28)

VB = 0.074034mm ≫ 0.000345271mm (29)

The observed tool wear values from electron microscopy include three stages of tool wear: initial wear, steady wear, and severe
wear, as shown in Fig. 6. The criteria for dividing the tool wear stages are as follows [12]:

St =

⎧
⎪⎪⎨

⎪⎪⎩

H1, (ω’’ < 0)
H2,

(
vE > vL, v’

E < v’
L
)

H3,
(
vE < vL, v’

E < v’
L
)
, 1⩽t⩽T (30)

In the above equation, St represents the tool wear stage at time t. H1, H2, and H3 correspond to the initial wear, steady wear, and severe
wear stages, respectively. vE and vL are two intermediate variables constructed to describe the tool wear patterns in the steady wear and
accelerated wear stages at time t. v́E and v́L are the first derivatives of vE and vL. ωʹ́ is the second derivative of the tool wear function,
reflecting the change in the growth rate of the wear curve. When ωʹ́ < 0, it is the initial wear stage (H1). Both the training set and the
test set of the experimental dataset cover the three stages of tool wear mentioned above.

Fig. 5. Experimental device: (a) CNC machine; (b) Milling platform; (c) Tool wear measuring platform.

Fig. 6. Schematic diagram of wear stage segmentation.
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4.2. Model training

MAML is a method that implements meta-learning [43]. Its purpose is to learn the initialization parameters of the model. The
learned initialization parameters can be quickly adapted to different sub-tasks, that is, the initialization parameters learned by the
MAML algorithm are used for the sub-model, so that the sub-model converges quickly after simple training. Before model training, it is
necessary to divide the monitored labeled data into a training set and a test set. The division criteria for the training set (Dtrain) and test
set (Dtest) are to randomly allocate the collected labeled data into training and test sets according to a 2:1 ratio, ensuring that the
training set and test set are disjoint and that the model’s predictive performance is based on test data that the model has not seen
before. For the milling process, the characteristics of tool flank wear are closely related to milling parameters. Therefore, tool wear
monitoring under different milling conditions can be regarded as a model of different tasks. Each processing condition represents a
type of subtask.

The parameter optimization process of MAML algorithm is shown in Fig. 7. The training samples are divided into different subtask
sets {Ti} at first, and then each subtask is divided into support set {Dsuppot

Ti ,train,D
suppot
Ti ,test } and query set {D

query
Ti ,train,D

query
Ti ,test}. The training process

of the model can be divided into two parts: the inner loop and the outer loop. In the inner loop structure, the parameter update process
of MAML is as follows:

θTi←θ − α∇θL(θ,Dsupport
Ti ,train) (31)

Where Dsupport
Ti ,train represents the support set of the i-th sub-task Ti in the training set, θ represents the initial trainable parameters of the

model, α represents the inner loop learning rate, θTi represents the optimal parameters obtained on the task, and ∇θL(θ,Dsupport
Ti ,train) is the

loss gradient. In the outer loop structure, MAML requires rapid adaptation to new tasks, so the outer loop integrates all sub-task
training through the support set Dquery

Ti ,train of the test data and minimizes its loss to obtain the parameter θ∗ of the meta-learning
training, as follows:

θ∗←θ − β∇θ

∑M

Ti∼P(Ti)

L(θTi ,D
query
Ti ,train) (32)

Where β represents the outer loop learning rate, and θ∗ represents the basic parameters of the model that are easy to generalize.
Through the above inner and outer loop training strategy, the model is trained to obtain a general and easy-to-generalization

predictor θ∗. The migration prediction of the unknown label data set Dsupport
Ti ,test is realized by a simple model fine-tuning strategy:

θ∗
Ti←θ − γ∇θL(θ∗,Dsupport

Ti ,test ) (33)

Where γ represents the learning rate of the fine-tuning phase, and θ∗Ti represents the model parameters that obey the specific sub-task
distribution after the fine-tuning.

When optimizing parameters using gradient descent, the convexity of the objective function is a sufficient condition for achieving
global optimality. However, the presence of nonlinear mapping relationships can undermine the global convexity of the objective
function, resulting in the possibility of suboptimal parameters after optimization. Although the objective function may not satisfy
global optimality, incorporating physical constraints into the model construction can ensure local convexity of the objective function
within a parameter space that holds practical physical significance.

Fig.7. Parameter optimization of the MAML algorithm.
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In summary, after introducing the core steps of the MAML algorithm in detail, the pseudo-code of the MAML algorithm is shown in
Table 2:

In order to verify the effectiveness of the MAML algorithm, the loss curves of the training set and the validation set of the direct
training model are shown in Fig. 8(a), and the loss curves of the training set and the validation set of the training model based on the
MAML pre-weight are shown in Fig. 8(b). From the overall trend of the loss value changes in the two graphs, the loss value in Fig. 8(b)
converges rapidly, while Fig. 8(a) converges after a period of time, and the loss values of both converge to about 0.5. Comparing the
initial loss value, it can be seen that the initial loss value in Fig. 8(b) is significantly smaller than that in Fig. 8(a). This is because the
pre-weight for MAML training is the comprehensive optimal weight value of all tasks, which can make the sub tasks converge quickly.
For Fig. 8(a), its initial weight is completely random, so its initial loss value is also completely random. Moreover, the training on
MAML pre-weight also avoids the model falling into local optimization, making the training of the model easier.

4.3. Results and discussions

In order to verify the effectiveness of the physics-guided deep learning model proposed in this study, the predicted results of the
model were compared with those of MLP [44], ResNet [45], LSTM [46], GRU, Physical [12] and Hybrid [29] models, as shown in
Fig. 9. To ensure that the comparison models achieve optimal comparative performance, we carefully considered the settings of their
hyperparameters. Specifically, for the GRUmodel, the hyperparameter settings are identical to those of the proposed PGA-GRUmodel.
The only difference between the LSTM and GRU models lies in the type of gate units used, while all other parameters remain the same
as those of the GRU model. In the case of the ResNet model, we employed the classic ResNet18 network for the comparative exper-
iments, which has been proven to perform well in practical applications. Similarly, in our comparative experiments, the ResNet model
yielded good prediction results. As for the MLP network, we conducted multiple trials to find a set of satisfactory hyperparameters
based on the model’s prediction performance and training cost. Regarding the physical model, since its hyperparameters are pre-
determined by the original proposer, we fitted them to the available data. Finally, the hybrid model is constructed based on the
combination of the aforementioned physical and data models. Therefore, the parameter settings for the final comparison model are as
follows: the structure of the MLP model consists of five full connection layers, and the number of neurons in each layer was set as 8, 16,
32, 16 and 1, respectively. The loss function was MSE. The structure of the ResNet model is ResNet18, and its convolutional kernel size
is set to 240×1 and 10×1. The channel is set to 128 and 256, and the loss function is MSE. The structure of the LSTMmodel consists of
three LSTM layers and a full connection layer. The state dimensions of the hidden layer of the LSTM are set to 64, 32, and 16,
respectively. The loss function is logcosh. The structure of the GRU model consists of three GRU layers and a fully connected layer. The
hidden layer unit dimensions of GRU are set to 64, 32, and 16 respectively, and the loss function is logcosh. For the above model, the
activation function and optimizer are set to Relu and Adam respectively. For the training process of the model, this study used two-
thirds of each dataset from the 9 experimental data sets of T1-T9 for model training, and the remaining one-third for model
testing. The predicted results are as follows:

Taking the condition (1) as an example, the prediction effects of different models on tool wear condition are shown in Fig. 9 (a-g). It
can be seen that the prediction performance based on MLP and ResNet are the worst, because MLP and ResNet only rely on experi-
mental data to establish the relationship between input and output. The monitoring signal by the sensor is a time series signal, so the
current tool wear condition is not only related to the signal monitored by the sensor, but also related to the monitoring signal before the
current time. For MLP and ResNet, there are no ability to model signal time series information. In addition, the model itself will have
overfitting and underfitting problems, so a large number of data training is required to make the network achieve the ideal prediction
effect. LSTM and GRU are currently widely used time series models. They adjust the information flow in the sequence through the
gating mechanism to extract the time series information of the signal. The GRU can be seen as a simplified version of the LSTM.
Compared with LSTM, GRU only has reset gate and update gate, so it is simpler in structure than LSTM, reducing the training difficulty
and overfitting risk of the model. From Fig. 9 (c, d) and Table 3, it can be observed that compared to MLP and ResNet, LSTM and GRU
significantly improve the model’s prediction accuracy by analyzing the time series information of the signals. Furthermore, due to the
fewer training parameters in GRU compared to LSTM, GRU demonstrates better prediction accuracy. This also confirms the reason why

Table 2
MAML algorithm pseudo-code.

Algorithm MAML Algorithm for Tool Wear Monitoring

Input: Distribution over tasks p(Ti), Learning rate hyperparameter α, β;
Output: Network weights θ;
1: Randomly initialize θ;
2: while not done do
3: Sample batch of tasks: Ti ∼ p(Ti);
4: for all Ti do
5: Evaluate ∇θL(θ,Dsupport

Ti ,train);
7: Compute adapted parameters with gradient descent:
θTi ←θ − α∇θL(θ,Dsupport

Ti ,train);
8: end for

9: Update the meta weight θ∗←θ − β∇θ
∑M

Ti∼P(Ti)
L(θTi ,D

query
Ti ,train);

10: end while
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we chose GRU in the model structure design. From Fig. 9 (e), it can be observed that the tool wear predicted by the physical model is
the most stable among all the models. This is because the physical model is based on empirical knowledge of tool wear mechanisms,
which provides strong physical constraints for prediction. However, due to the strict adherence to predetermined physical rules in its
predictions, the physical model lacks real-time feedback for handling states. The prediction errors of the physical model cannot be
effectively corrected like those of the data model, resulting in poor generalization ability. As for the prediction results of the hybrid
model shown in Fig. 9 (f), it combines the results of the physical model and the data model using regularized particle filtering
techniques. It treats the prediction results of the data model as observations, while the physical model calculates the transitions be-
tween states. This fusion approach improves the accuracy and physical consistency of the prediction results compared to the pure data
model. However, due to the significant error accumulation in the first-order Taylor series of the physical model and the large physical
inconsistency of the data model without physical constraints, the improvement on the results after particle filtering is not very

Fig. 8. The influence of MAML algorithm on model training process.

Fig. 9. Comparative analysis of model prediction results.

Table 3
MAE evaluation analysis.

T1 T2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 Average

MLP 4.118 3.061 2.903 3.798 3.965 5.568 4.143 3.972 2.458 3.776
ResNet 3.677 3.024 3.294 4.432 4.008 4.548 3.774 4.719 3.848 3.925
LSTM 2.974 1.981 2.511 2.934 2.486 3.338 2.674 3.892 2.667 2.829
GRU 2.625 1.963 1.892 2.450 2.377 2.816 3.991 2.404 2.089 2.512
Physical 5.644 7.256 7.220 10.064 7.727 3.372 6.205 5.720 7.417 6.736
Hybrid 2.405 1.527 1.881 2.436 2.085 2.673 3.004 2.195 1.431 2.182
PGA-GRU 1.646 0.882 1.550 1.239 1.094 0.955 2.631 2.005 1.770 1.530
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significant compared to the method proposed in this study. For Fig. 9(g), the predicted results of the physical guided GRUModel (PGA-
GRU) are presented. It can be seen that the PGA-GRU model has the best prediction results. This is because on the basis of the GRU
model, considering the progressive degradation characteristics of tool wear, a monotonic mechanism is introduced, so that the tool
wear condition at the current moment is greater than the tool wear condition at the previous moment. At the same time, the rela-
tionship between adjacent wear values is established by using the physical model of tool wear, so as to introduce the physical
constraint loss term to constrain the optimization process of the model. In Fig. 9 (h), a-g correspond to five different prediction models
(MLP, ResNet, LSTM, GRU, Physical, Hybrid, PGA-GRU) in sequence. It can be seen that the PGA-GRU model has significantly better
prediction accuracy and physical consistency than other models.

The prediction performance of the model under other processing conditions is indirectly expressed by the evaluation indicators
shown in Tables 3–5. Table 3 measures the absolute deviation between the real value and the predicted value through the MAE
evaluation index. Table 4 measures the relative deviation between the real value and the predicted value through the MAPE evaluation
index. Compared with MAE, MAPE uses percentage to measure the size of the error, and does not need to combine the dimension of the
real value to give a judgment of the difference. Table 5 measures the physical inconsistency of the model prediction results through the
consistency evaluation index. It can be seen from the prediction results of Tables 3–5 that the method proposed in this paper is almost
always better than the prediction results of the comparison model under different working conditions.

4.4. The model validation with benchmark data

In order to objectively evaluate the performance of the model proposed in this study, this study evaluates the performance of the
model through the “phm2010” public data set [47]. The milling parameters are set as follows: the spindle speed is set to 10360 rpm;
The feed rate is set to 1.555 m/min; The milling width is set to 0.125 mm; The milling depth is set to 0.25 mm; The milling tools are
three kinds of ball head cemented carbide tools; The workpiece is Inconel 718. The signals in the milling process are collected by
multiple sensors, including dynamometers and accelerometers in three different direction channels, and acoustic emission sensors. The
sampling frequency of each channel is 50KHz. After cutting one path each time, use LEICAMZ12 microscope to measure the tool wear.
For the three groups of experimental data measured, C1 and C4 are used as training sets to train the model, and C6 is used as a test set to
verify the effectiveness of the model. For 7-dimensional machining signals, this study uses force sensor signals from different directions
to predict tool wear conditions.

In the benchmark dataset, the training process of model parameters is consistent with the training process described in Table 2,
which can be mainly divided into: initialization of parameters, fine-tuning of parameters, and evaluation of the model. Firstly, the
three sets of experiments under different operating conditions (C1, C4, C6) corresponding to the benchmark dataset are divided into a
support set and a query set. The parameters of the model are updated by calculating gradients and accumulating them on the subtasks
consisting of C1 and C4 datasets, thereby obtaining the initialization parameters of the model. Secondly, the fine-tuning process of
parameters is to update the initial parameters through the support set of the C6 subtask, so that the model parameters applicable to the
task can be quickly obtained.

The prediction results of the model proposed in this study on the “phm2010” public dataset are shown in Fig. 10 and Table 6. From
the comparison of the prediction results of the seven models in Fig. 10, it can be seen that the prediction effect of the model proposed in
this study is significantly better than that of MLP, ResNet, LSTM, GRU, Physical and Hybrid models. In Fig. 10 (h), a-g correspond to
five different prediction models (MLP, ResNet, LSTM, GRU, Physical, Hybrid, PGA-GRU) in sequence. It can be observed that the MLP
and ResNet models have the lowest prediction accuracy. Although the prediction accuracy of LSTM and GRU models is greatly
improved compared with MLP and ResNet models, their physical consistency is also poor. For the physical model, its predictions are
the most stable because it is based on the physical rules of tool wear. However, due to the strong constraints imposed by these rules, the
prediction process of the model lacks adjustments for the machining process. As for the hybrid model, it relies on particle filtering
techniques to improve the prediction results compared to the data model. However, due to the accumulation of errors during the state
transition process and the lack of physical constraints on the observed values, the improvement is limited. The PGA-GRU model
proposed in this paper not only maintains the prediction accuracy, but also eliminates the physical inconsistency in the prediction
process. The significant deviation in the prediction of the above model in the later stage is due to the learning characteristics of deep
learning. The wear rate of tools in the initial and severe stages is higher than that in the stable model stage, resulting in uneven
distribution of samples, with most samples coming from the stable stage. Compared to the stable stage, there will be significant de-
viations in the severe stage. The prediction effect of the above model on the benchmark data set is consistent with that of the milling
data set in the previous section, so it can be explained that the physical guidance data model established in this paper has good
generalization ability under different data sets.

5. Conclusion

Aiming at the monitoring of tool wear condition in machining process, this study proposes a physics-guided deep learning model,
which innovatively solves the modeling difficulties caused by scale differences between signals and the difficulties in tool condition
monitoring caused by insufficient prior knowledge of data-driven models. The main conclusions are as follows:

1) A dual scale time series model is proposed in this study, which incorporates monotonicity constraints based on the progressive
degradation characteristics of tool wear to reduce the physical inconsistency of model predictions. This leads to an accurate
mapping between monitoring signals and tool wear, providing an effective way for on-line monitoring of tool wear.
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Table 4
MAPE evaluation analysis.

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 Average

MLP 0.080 0.081 0.071 0.078 0.087 0.118 0.081 0.088 0.061 0.083
ResNet 0.071 0.073 0.073 0.090 0.090 0.102 0.077 0.102 0.090 0.085
LSTM 0.068 0.052 0.065 0.079 0.055 0.072 0.061 0.086 0.065 0.067
GRU 0.057 0.054 0.042 0.067 0.054 0.070 0.084 0.057 0.056 0.060
Physical 0.103 0.149 0.174 0.197 0.144 0.071 0.115 0.115 0.154 0.136
Hybrid 0.048 0.044 0.039 0.057 0.046 0.063 0.063 0.053 0.042 0.050
PGA-GRU 0.046 0.036 0.044 0.038 0.030 0.017 0.057 0.040 0.039 0.039

Table 5
Consistency evaluation analysis.

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 Average

MLP 0.495 0.333 0.386 1.027 0.670 0.887 1.354 1.937 0.795 0.876
ResNet 0.532 0.423 1.378 1.448 0.607 1.414 0.931 1.554 1.101 1.043
LSTM 0.234 0.069 0.330 0.033 0.062 0.094 0.330 0.422 0.191 0.196
GRU 0.309 0.120 0.410 0.018 0.090 0.058 0.396 0.365 0.289 0.228
Physical 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Hybrid 0.092 0.043 0.107 0.000 0.027 0.045 0.226 0.105 0.183 0.092
PGA-GRU 0.000 0.003 0.089 0.000 0.000 0.019 0.064 0.063 0.077 0.035

Fig. 10. Comparison of prediction results of the model on benchmark data sets.

Table 6
The performance of various models.

MAPE MAE Inconsistency

MLP 0.252 27.981 1.550
ResNet 0.142 15.719 1.154
LSTM 0.076 9.306 0.485
GRU 0.051 6.931 2.324
Physical 0.0478 6.3627 0
Hybrid 0.0594 7.7488 0.773
PGA-GRU 0.030 4.224 0.270
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2) Based on the physical model of tool wear, the physical relationship between adjacent wear values is established, and the physical
constraint loss term is introduced. By using physical model labels and real labels to jointly train the model to fully mine the hidden
relationship between model input and output.

3) For the problem of tool wear monitoring under various machining conditions, this study uses the MAML algorithm to train the pre-
weight of the model to improve the generalization ability of the model under different machining conditions, so that the model is
suitable for different machining conditions.

Based on the complexity of machining mechanisms, the guidance of a single wear mechanism on data models is limited. In future
research, data-driven methods will be combined with more machining mechanisms, such as machining dynamics models, to improve
the generalization of the model under different machining types and conditions.
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